N.Y. Steinman and A.J. Domb. 2019. “Injectable pasty biodegradable polyesters derived from castor oil and hydroxyl-acid lactones.” Journal of Pharmacology and Experimental Therapeutics, 370, 3, Pp. 736-741. Publisher's Version Abstract
Pasty polymers offer a platform for injectable implants for drug delivery. A library of biodegradable pasty polymers was synthesized by bulk ring-opening polymerization of lactide, glycolide, trimethylene carbonate, or caprolactone using castor oil or 12-hydroxy stearic acid as hydroxyl initiators and stannous octoate as the catalyst. Some of the polymers behaved as Newtonian liquids. Pasty polymers of poly(caprolactone) and poly(trimethylene carbonate) were stable under physiologic conditions for over 1 month in vitro, whereas polymers of poly(lactic-co-glycolic acid) degraded within 10 days. These pasty polymers offer a platform for pasty injectable biodegradable carriers for drugs and fillers. Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics.
A. Shehadeh, R. Bruck-Haimson, D. Saidemberg, A. Zacharia, S. Herzberg, A. Ben-Meir, and A. Moussaieff. 2019. “A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome.” FASEB Journal, 33, 9, Pp. 10291-10299. Publisher's Version Abstract
Follicular fluid (FF) is a liquid that surrounds the ovum. Its metabolite and, specifically, its lipid content have been associated with oocyte development. To characterize possible association between the lipid composition of FF and the outcome of pregnancy, we carried out a lipidomics study and compared the abundance of lipids from FF of patients with positive and negative outcomes. We found a differential lipid network wiring in positive-outcome FF, with a significant decrease (∼2 fold; P < 0.001) in triacylglycerol levels and higher accumulation (10–50%; P < 0.001) of membrane lipids groups (phospholipids and sphingolipids). In addition to this major metabolic alteration, other lipid groups such as cholesteryl esters showed lower levels in positive-outcome patients, whereas derivatives of vitamin D were highly accumulated in positive-outcome FF, supporting previous studies that associate vitamin D levels in FF to pregnancy outcome. Our data also point to specific lipid species with a differential accumulation pattern in positive-outcome FF that predicted pregnancy in a receiver operating characteristic analysis. Altogether, our results suggest that FF lipid network is associated with the oocyte development, with possible implications in diagnostics and treatment.—Shehadeh, A., Bruck-Haimson, R., Saidemberg, D., Zacharia. A., Herzberg, S., Ben-Meir, A., Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J. 33, 10291–10299 (2019). © FASEB
Introduction: Sativex® spray is clinically utilized to deliver delta9-tetrahydrocannabinol and cannabidiol to oral mucosa for systemic absorption. We challenge the consensus that the mechanism of absorption following the oro-mucosal application occurs via the buccal tissue. Areas covered: Correctness of the consensus of this absorption pathway arose when reviewing publications regarding the influence fed versus fasting states have on pharmacokinetics of these cannabinoids administered to the oral mucosa. This finding is more suitable for peroral administration, where stomach content affects the absorption profile. We hypothesize that these cannabinoids are ingested and absorbed in the gastrointestinal tract. Expert opinion: Although clinical importance of Sativex® is not disputed, the wide acceptance of its being a successful example of drug delivery through oral mucosa is questionable. Sativex® acts as an example for other drugs delivered to oral mucosa for systemic absorption and unintentionally washed by the saliva flow into the gastrointestinal tract. Delivery of each medicine through oral mucosa should be validated in-vivo to ensure this route to be the predominant one. Revealing the underlying absorption mechanisms would enable predicting the impact of different physiological parameters such as saliva flow and fed/fasting states on the pharmacokinetics of the delivered medication. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
S. Dishon, A. Schumacher-Klinger, C. Gilon, A. Hoffman, and G. Nussbaum. 2019. “Myristoylation Confers Oral Bioavailability and Improves the Bioactivity of c(MyD 4-4), a Cyclic Peptide Inhibitor of MyD88.” Molecular Pharmaceutics, 16, 4, Pp. 1516-1522. Publisher's Version Abstract
Myeloid differentiation primary response 88 (MyD88) is an intracellular adaptor protein central to the signaling of multiple receptors involved in inflammation. Since innate immune inflammation promotes autoimmunity, MyD88 is an attractive target in autoimmune disease. We previously developed c(MyD 4-4), a novel cyclic peptide competitive inhibitor of MyD88 dimerization that is metabolically stable. Parenteral administration of c(MyD 4-4) reduces disease severity in a mouse model of the human autoimmune disease multiple sclerosis. We now show that N-terminal myristoylation of c(MyD 4-4) enhances the competitive inhibition of MyD88 dimerization in living cells, leading to improved inhibition of the Toll-like receptor and IL-1 receptor signaling. Importantly, myristoylation converts c(MyD 4-4) to an orally bioavailable inhibitor of MyD88. Oral administration of c(MyD 4-4) significantly lowered the inflammatory cytokines secreted by peripheral autoimmune T cells in mice immunized with myelin antigens and ameliorated disease severity in the mouse model of multiple sclerosis. Taken together, we show the conversion of a protein active region to a metabolically stable, selective cyclic peptide that is orally bioavailable. © 2019 American Chemical Society.
S. El-Atawneh, S. Hirsch, R. Hadar, J. Tam, and A. Goldblum. 2019. “Prediction and Experimental Confirmation of Novel Peripheral Cannabinoid-1 Receptor Antagonists.” Journal of Chemical Information and Modeling, 59, 9, Pp. 3996-4006. Publisher's Version Abstract
Small molecules targeting peripheral CB1 receptors have therapeutic potential in a variety of disorders including obesity-related, hormonal, and metabolic abnormalities, while avoiding the psychoactive effects in the central nervous system. We applied our in-house algorithm, iterative stochastic elimination, to produce a ligand-based model that distinguishes between CB1R antagonists and random molecules by physicochemical properties only. We screened ∼2 million commercially available molecules and found that about 500 of them are potential candidates to antagonize the CB1R. We applied a few criteria for peripheral activity and narrowed that set down to 30 molecules, out of which 15 could be purchased. Ten out of those 15 showed good affinity to the CB1R and two of them with nanomolar affinities (Ki of ∼400 nM). The eight molecules with top affinities were tested for activity: two compounds were pure antagonists, and five others were inverse agonists. These molecules are now being examined in vivo for their peripheral versus central distribution and subsequently will be tested for their effects on obesity in small animals. © 2019 American Chemical Society.
H. Neumann-Raizel, A. Shilo, S. Lev, M. Mogilevsky, B. Katz, D. Shneor, Y.D. Shaul, A. Leffler, A. Gabizon, R. Karni, A. Honigman, and A.M. Binshtok. 2019. “2-APB and CBD-mediated targeting of charged cytotoxic compounds into tumor cells suggests the involvement of TRPV2 channels.” Frontiers in Pharmacology, 10. Publisher's Version Abstract
Targeted delivery of therapeutic compounds to particular cell types such that they only affect the target cells is of great clinical importance since it can minimize undesired side effects. For example, typical chemotherapeutic treatments used in the treatment of neoplastic disorders are cytotoxic not only to cancer cells but also to most normal cells when exposed to a critical concentration of the compound. As such, many chemotherapeutics exhibit severe side effects, often prohibiting their effective use in the treatment of cancer. Here, we describe a new means for facilitated delivery of a clinically used chemotherapy compound' doxorubicin, into hepatocellular carcinoma cell line (BNL1 ME). We demonstrate that these cells express a large pore, cation non-selective transient receptor potential (TRP) channel V2. We utilized this channel to shuttle doxorubicin into BNL1 ME cells. We show that co-application of either cannabidiol (CBD) or 2-APB, the activators of TRPV2 channels, together with doxorubicin leads to significantly higher accumulation of doxorubicin in BNL1 ME cells than in BNL1 ME cells that were exposed to doxorubicin alone. Moreover, we demonstrate that sub-effective doses of doxorubicin when co-applied with either 2-APB or CBD lead to a significant decrease in the number of living BNL1 ME cell and BNL1 ME cell colonies in comparison to application of doxorubicin alone. Finally, we demonstrate that the doxorubicin-mediated cell death is significantly more potent, requiring an order of magnitude lower dose, when co-applied with CBD than with 2-APB. We suggest that CBD may have a dual effect in promoting doxorubicin-mediated cell death by facilitating the entry of doxorubicin via TRPV2 channels and preventing its clearance from the cells by inhibiting P-glycoprotein ATPase transporter. Collectively, these results provide a foundation for the use of large pore cation-non selective channels as “natural” drug delivery systems for targeting specific cell types. Copyright © 2019 Neumann-Raizel, Shilo, Lev, Mogilevsky, Katz, Shneor, Shaul, Leffler, Gabizon, Karni, Honigman and Binshtok. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
O. Barkai, S. Puig, S. Lev, B. Title, B. Katz, L. Eli-Berchoer, H.B. Gutstein, and A.M. Binshtok. 2019. “Platelet-derived growth factor activates nociceptive neurons by inhibiting M-current and contributes to inflammatory pain.” Pain, 160, 6, Pp. 1281-1296. Publisher's Version Abstract
Endogenous inflammatory mediators contribute to the pathogenesis of pain by acting on nociceptors, specialized sensory neurons that detect noxious stimuli. Here, we describe a new factor mediating inflammatory pain. We show that platelet-derived growth factor (PDGF)-BB applied in vitro causes repetitive firing of dissociated nociceptor-like rat dorsal root ganglion neurons and decreased their threshold for action potential generation. Injection of PDGF-BB into the paw produced nocifensive behavior in rats and led to thermal and mechanical pain hypersensitivity. We further detailed the biophysical mechanisms of these PDGF-BB effects and show that PDGF receptor-induced inhibition of nociceptive M-current underlies PDGF-BB-mediated nociceptive hyperexcitability. Moreover, in vivo sequestration of PDGF or inhibition of the PDGF receptor attenuates acute formalin-induced inflammatory pain. Our discovery of a new pain-facilitating proinflammatory mediator, which by inhibiting M-current activates nociceptive neurons and thus contributes to inflammatory pain, improves our understanding of inflammatory pain pathophysiology and may have important clinical implications for pain treatment. © 2019 International Association for the Study of Pain.
A. Aran, M. Eylon, M. Harel, L. Polianski, A. Nemirovski, S. Tepper, A. Schnapp, H. Cassuto, N. Wattad, and J. Tam. 2019. “Lower circulating endocannabinoid levels in children with autism spectrum disorder.” Molecular Autism, 10, 1. Publisher's Version Abstract
Background: The endocannabinoid system (ECS) is a major regulator of synaptic plasticity and neuromodulation. Alterations of the ECS have been demonstrated in several animal models of autism spectrum disorder (ASD). In some of these models, activating the ECS rescued the social deficits. Evidence for dysregulations of the ECS in human ASD are emerging, but comprehensive assessments and correlations with disease characteristics have not been reported yet. Methods: Serum levels of the main endocannabinoids, N-arachidonoylethanolamine (AEA or anandamide) and 2-arachidonoylglycerol (2-AG), and their related endogenous compounds, arachidonic acid (AA), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA), were analyzed by liquid chromatography/tandem mass spectrometry in 93 children with ASD (age = 13.1 ± 4.1, range 6-21; 79% boys) and 93 age- and gender-matched neurotypical children (age = 11.8 ± 4.3, range 5.5-21; 79% boys). Results were associated with gender and use of medications, and were correlated with age, BMI, and adaptive functioning of ASD participants as reflected by scores of Autism Diagnostic Observation Schedule (ADOS-2), Vineland Adaptive Behavior Scale-II (VABS-II), and Social Responsiveness Scale-II (SRS-2). Results: Children with ASD had lower levels (pmol/mL, mean ± SEM) of AEA (0.722 ± 0.045 vs. 1.252 ± 0.072, P < 0.0001, effect size 0.91), OEA (17.3 ± 0.80 vs. 27.8 ± 1.44, P < 0.0001, effect size 0.94), and PEA (4.93 ± 0.32 vs. 7.15 ± 0.37, P < 0.0001, effect size 0.65), but not AA and 2-AG. Serum levels of AEA, OEA, and PEA were not significantly associated or correlated with age, gender, BMI, medications, and adaptive functioning of ASD participants. In children with ASD, but not in the control group, younger age and lower BMI tended to correlate with lower AEA levels. However, these correlations were not statistically significant after a correction for multiple comparisons. Conclusions: We found lower serum levels of AEA, PEA, and OEA in children with ASD. Further studies are needed to determine whether circulating endocannabinoid levels can be used as stratification biomarkers that identify clinically significant subgroups within the autism spectrum and if they reflect lower endocannabinoid "tone" in the brain, as found in animal models of ASD. © 2019 The Author(s).