Nissim Garti

E. Abramov and Garti, N. . 2020. Incorporation Of Curcumin In Liquid Nanodomains Embedded Into Polymeric Films For Dermal Application. Colloids And Surfaces B: Biointerfaces. doi:10.1016/j.colsurfb.2020.111468. Publisher's Version
Liquid nanovehicles are gaining interest in drug delivery because of the high solubilization capacity of bioactives at their interface and enhanced permeation of compounds across physiological membranes. However, the dermal application of liquid nanovehicles is still limited. The goal of this research is to develop a dermal delivery system based on embedding of liquid nanovehicles into polymeric films, which will allow controlled release of the nanodroplets with the solubilized drug. In this study, we describe the incorporation of empty and curcumin-loaded nanodomains into polymeric film. The novel technology results in formation of homogeneous, transparent and elastic films with high (up to 85 wt%) loading capacity of nanodomains. The fundamental structural characterizations show that nanodomain structures embedded in the dry film are spontaneously reformed during the dermal application with similar droplets size of 10 nm. Ex-vivo release studies were performed on Franz diffusion cells and demonstrated a significant permeation of curcumin through the pig skin. This novel film technology can serve as a “solid platform reservoir” for liquid nanovehicles which enables controlled release of nanodroplets with solubilized bioactive. © 2020 Elsevier B.V.
S. Ezrahi, Aserin, A. , and Garti, N. . 2019. Basic Principles Of Drug Delivery Systems – The Case Of Paclitaxel. Advances In Colloid And Interface Science, 263, Pp. 95-130. doi:10.1016/j.cis.2018.11.004. Publisher's Version
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems. © 2018 Elsevier B.V.