Publications

A. Zacharia, Saidemberg, D. , Mannully, C.T. , Kogan, N.M. , Shehadeh, A. , Sinai, R. , Zucker, A. , Bruck-Haimson, R. , Goldstein, N. , Haim, Y. , Dani, C. , Rudich, A. , and Moussaieff, A. . 2020. Distinct Infrastructure Of Lipid Networks In Visceral And Subcutaneous Adipose Tissues In Overweight Humans. American Journal Of Clinical Nutrition, 112, 4, Pp. 979-990. doi:10.1093/ajcn/nqaa195. Publisher's Version
Background: Adipose tissue plays important roles in health and disease. Given the unique association of visceral adipose tissue with obesity-related metabolic diseases, the distribution of lipids between the major fat depots located in subcutaneous and visceral regions may shed new light on adipose tissue-specific roles in systemic metabolic perturbations. Objective: We sought to characterize the lipid networks and unveil differences in the metabolic infrastructure of the 2 adipose tissues that may have functional and nutritional implications. Methods: Paired visceral and subcutaneous adipose tissue samples were obtained from 17 overweight patients undergoing elective abdominal surgery. Ultra-performance LC-MS was used to measure 18,640 adipose-derived features; 520 were putatively identified. A stem cell model for adipogenesis was used to study the functional implications of the differences found. Results: Our analyses resulted in detailed lipid metabolic maps of the 2 major adipose tissues. They point to a higher accumulation of phosphatidylcholines, triacylglycerols, and diacylglycerols, although lower ceramide concentrations, in subcutaneous tissue. The degree of unsaturation was lower in visceral adipose tissue (VAT) phospholipids, indicating lower unsaturated fatty acid incorporation into adipose tissue. The differential abundance of phosphatidylcholines we found can be attributed at least partially to higher expression of phosphatidylethanolamine methyl transferase (PEMT). PEMT-deficient embryonic stem cells showed a dramatic decrease in adipogenesis, and the resulting adipocytes exhibited lower accumulation of lipid droplets, in line with the lower concentrations of glycerolipids in VAT. Ceramides may inhibit the expression of PEMT by increased insulin resistance, thus potentially suggesting a functional pathway that integrates ceramide, PEMT, and glycerolipid biosynthetic pathways. Conclusions: Our work unveils differential infrastructure of the lipid networks in visceral and subcutaneous adipose tissues and suggests an integrative pathway, with a discriminative flux between adipose tissues. Copyright © The Author(s) on behalf of the American Society for Nutrition 2020.
D. Izgelov, Freidman, M. , and Hoffman, A. . 2020. Investigation Of Cannabidiol Gastro Retentive Tablets Based On Regional Absorption Of Cannabinoids In Rats. European Journal Of Pharmaceutics And Biopharmaceutics, 152, Pp. 229-235. doi:10.1016/j.ejpb.2020.05.010. Publisher's Version
The cannabis plant has been widely researched for many therapeutic indications and found to be effective in many chronic conditions such as epilepsy, neuropathic or chronic pain and more. However, biased opinion against compounds of the plant, regulatory as well as compounding challenges have led to very few approved cannabinoid medicinal products. Those formulations which are approved are dosed several times a day, creating an unmet need for controlled release (CR) formulations of cannabinoids. Conventional CR formulations rely on prolonged absorption of the drug, including absorption from the colon. The purpose of this work is to investigate regional absorption of major cannabinoids THC and CBD from the colon and develop a suitable CR formulation. As hypothesized by researchers, THC and CBD have poor absorption from the colon compared to small intestine, suggesting that these compounds have a narrow absorption window. The suggested CR formulation examined in-vitro was a floating gastro retentive tablet based on egg albumin matrix, gas generating agents and surfactants. In-vivo investigation of CBD containing formulation in the freely moving rat model proved a prolonged absorption phase with a substantial increase in bioavailability compared to CBD solution. The findings of this paper answer a crucial question regarding potential application of CR dosage forms for cannabinoids and shed light on the regional intestinal absorption of these compounds. Ultimately, these results cement the way for future development of cannabinoid gastro retentive dosage forms. © 2020 Elsevier B.V.
D. Izgelov, Domb, A.J. , and Hoffman, A. . 2020. The Effect Of Piperine On Oral Absorption Of Cannabidiol Following Acute Vs. Chronic Administration. European Journal Of Pharmaceutical Sciences, 148. doi:10.1016/j.ejps.2020.105313. Publisher's Version
Piperine is an alkaloid naturally found in black pepper with a myriad of pharmacological attributes. Piperine's most far reaching indication is drug absorption enhancment, with supportive data regarding its ability to inhibit first pass effect mechanisms. However, alongside these findings, the role of piperine as an absorption enhancer is undermined with publications stating an apparent effect of a metabolic inducer. The aim of this work is to investigate the effect of repeated administration of piperine in a lipid-based formulation, on oral absorption of cannabidiol (CBD), compared to acute piperine dosing. The effect of piperine on CBD absorption was determined pre-clinically in the freely moving rat model. Results of this work demonstrated that there was no significant difference in piperine's effect, when given chronically or in a single dose regimen. Both groups resulted in approximate 2.5-fold increase in oral bioavailability of CBD compared to control group without piperine. © 2020 Elsevier B.V.
A. Talhami, Swed, A. , Hess, S. , Ovadia, O. , Greenberg, S. , Schumacher-Klinger, A. , Rosenthal, D. , Shalev, D.E. , Hurevich, M. , Lazarovici, P. , Hoffman, A. , and Gilon, C. . 2020. Cyclizing Painkillers: Development Of Backbone-Cyclic Taps Analogs. Frontiers In Chemistry, 8. doi:10.3389/fchem.2020.532577. Publisher's Version
Painkillers are commonly used medications. Native peptide painkillers suffer from various pharmacological disadvantages, while small molecule painkillers like morphine are highly addictive. We present a general approach aimed to use backbone-cyclization to develop a peptidomimetic painkiller. Backbone-cyclization was applied to transform the linear peptide Tyr-Arg-Phe-Sar (TAPS) into an active backbone-cyclic peptide with improved drug properties. We designed and synthesized a focused backbone-cyclic TAPS library with conformational diversity, in which the members of the library have the generic name TAPS c(n-m) where n and m represent the lengths of the alkyl chains on the nitrogens of Gly and Arg, respectively. We used a combined screening approach to evaluate the pharmacological properties and the potency of the TAPS c(n-m) library. We focused on an in vivo active compound, TAPS c(2-6), which is metabolically stable and has the potential to become a peripheral painkiller being a full μ opioid receptor functional agonist. To prepare a large quantity of TAPS c(2-6), we optimized the conditions of the on-resin reductive alkylation step to increase the efficiency of its SPPS. NMR was used to determine the solution conformation of the peptide lead TAPS c(2-6). © Copyright © 2020 Talhami, Swed, Hess, Ovadia, Greenberg, Schumacher-Klinger, Rosenthal, Shalev, Hurevich, Lazarovici, Hoffman and Gilon.
D. Izgelov, Davidson, E. , Barasch, D. , Regev, A. , Domb, A.J. , and Hoffman, A. . 2020. Pharmacokinetic Investigation Of Synthetic Cannabidiol Oral Formulations In Healthy Volunteers. European Journal Of Pharmaceutics And Biopharmaceutics, 154, Pp. 108-115. doi:10.1016/j.ejpb.2020.06.021. Publisher's Version
Recent advances in the research of medicinal cannabis has placed the non-intoxicating cannabinoid cannabidiol (CBD) at the front of scientific research. The reasons behind this popularity is the compound's therapeutic properties, alongside a safe profile of administration lacking addictive properties such as euphoric state of mind and a wide dosing range. Oral administration of CBD is challenging due to poor solubility in the gastro-intestinal system and susceptibility to extensive first pass metabolism. As a result, the practice in clinic and investigational trials is to administer cannabinoids in edible oils or oil-based solutions. Nonetheless, reported pharmacokinetics of cannabinoids and CBD in particular are not uniform among research groups and are affected by the vehicle of administration. The purpose of the work presented here is to investigate oral absorption processes of synthetic CBD when given in different oral formulations in healthy volunteers. The study design was a three way, blind, cross-over single administration study of 12 healthy male volunteers. CBD was administered in powder form, dissolved in sesame oil and in self-nano-emulsifying drug delivery system (SNEDDS). Administration of CBD in lipid-based vehicles resulted in a significant increase in Cmax and AUC of CBD, as compared to powder form. Overall plasma exposure of CBD did not differ between sesame oil vehicle and the SNEDDS formulation. However, administration of CBD in pure oil resulted in two absorption behaviors of early and delayed absorption among subjects, as opposed to SNEDDS platform that resulted in a uniform early absorption profile. Results of this trial demonstrate the importance of solubilization process of lipophilic drugs such as CBD and demonstrated the ability of the nano formulation to achieve a reliable, predictable PK profile of the drug. These findings offer a standardized oral formulation for the delivery of cannabinoids and contribute data for the growing field of cannabinoid pharmacokinetics. © 2020 Elsevier B.V.
D. Izgelov, Regev, A. , Domb, A.J. , and Hoffman, A. . 2020. Using The Absorption Cocktail Approach To Assess Differential Absorption Kinetics Of Cannabidiol Administered In Lipid-Based Vehicles In Rats. Molecular Pharmaceutics, 17, 6, Pp. 1979-1986. doi:10.1021/acs.molpharmaceut.0c00141. Publisher's Version
Lipid-based drug delivery systems have been vastly investigated as a pharmaceutical method to enhance oral absorption of lipophilic drugs. However, these vehicles not only affect drug bioavailability but may also have an impact on gastric emptying, drug disposition, lymphatic absorption and be affected by lipid digestion mechanisms. The work presented here compared the pharmacokinetic (PK) behavior of the non-intoxicating cannabinoid cannabidiol (CBD) in sesame oil vs. a self-nano emulsifying drug delivery system (SNEDDS). This investigation was conducted with a unique tool termed the "absorption cocktail approach". In this concept, selected molecules: metoprolol, THC, and ibuprofen, were coadministered with CBD in the SNEDDS and sesame oil. This method was used to shed light on the complex absorption process of poorly soluble drugs in vivo, specifically assessing the absorption kinetics of CBD. It was found that the concentration vs. time curve following CBD-sesame oil oral administration showed extended input of the drug with a delayed Tmax compared to CBD-SNEDDS. Using the "cocktail"approach, a unique finding was observed when the less lipophilic compounds (metoprolol and ibuprofen) exited the stomach much earlier than the lipophilic cannabinoids in sesame oil, proving differential absorption kinetics. Findings of the absorption cocktail approach reflected the physiological process of the GI, e.g., gastric retention, stomach content separation, lipid digestion, drug precipitation and more, demonstrating its utility. Nonetheless, the search for more compounds as suitable probes is underway. © 2020 American Chemical Society.
D. Izgelov, Shmoeli, E. , Domb, A.J. , and Hoffman, A. . 2020. The Effect Of Medium Chain And Long Chain Triglycerides Incorporated In Self-Nano Emulsifying Drug Delivery Systems On Oral Absorption Of Cannabinoids In Rats. International Journal Of Pharmaceutics, 580. doi:10.1016/j.ijpharm.2020.119201. Publisher's Version
The aim of this research was to investigate the effect of the lipid component in self-emulsifying drug delivery systems on the oral absorption of major cannabinoids Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD). The investigated lipids were either long chain triglycerides (LCT) or medium chain triglycerides (MCT) with different composition, fatty acid chain length, degree of saturation and their absorption pathway to the systemic circulation. Formulations were developed with the purpose of creating thermodynamically stable oil-in-water nano emulsions/suspensions with particle size of 50 nm or less which carry the lipophilic drug and increase water solubility. Following a methodic screening of suitable excipients in-vitro, leading formulations based on sesame oil or MIGLYOL® 812N (Type I LCT/MCT SNEDDS) and cocoa butter or tricaprin (Type II LCT/MCT SNEDDS) were investigated in the freely moving rat model. Results in rat model demonstrated that the effect of each type of lipid on bioavailability of cannabinoids is not straightforwardly anticipated. The differences in the effect of LCT and MCT on absorption was not substantial for Type I formulations, however, more prominent for Type II formulations. This unpredictable behavior in-vivo demonstrates the importance of investigating each vehicle pre-clinically, following the in-vitro development. © 2020 Elsevier B.V.
C. Itin, Barasch, D. , Domb, A.J. , and Hoffman, A. . 2020. Prolonged Oral Transmucosal Delivery Of Highly Lipophilic Drug Cannabidiol. International Journal Of Pharmaceutics, 581. doi:10.1016/j.ijpharm.2020.119276. Publisher's Version
Delivery of drugs through oral mucosa enables bypass of the gastrointestinal tract and “first pass“ metabolism in the liver and the gut. Thus, a higher and less variable bioavailability can be obtained. Mechanisms of this administration route for cannabidiol were investigated in the current research in pigs. Results show that cannabidiol has substantially low permeability rate over 8 h through oral mucosa and accumulates significantly within it. Furthermore, following the removal of the delivery device, residual prolongation of release from the oral mucosa into systemic blood circulation continues for several hours. This method of delivery enabled acquisition of clinically relevant plasma levels of cannabidiol. The absorption profile indicates that cannabidiol, as well as other lipophilic molecules, should be delivered through oral mucosa for systemic absorption from a device that conceals the drug and prevents its washout by the saliva flow and subsequent ingestion into gastrointestinal tract. © 2020 Elsevier B.V.
C. Itin, Komargodski, R. , Domb, A.J. , and Hoffman, A. . 2020. Controlled Delivery Of Apomorphine Through Buccal Mucosa, Towards A Noninvasive Administration Method In Parkinson's Disease: A Preclinical Mechanistic Study. Journal Of Pharmaceutical Sciences, 109, 9, Pp. 2729-2734. doi:10.1016/j.xphs.2020.05.017. Publisher's Version
Apomorphine (APO), a potent treatment for Parkinson's disease, is only administered parenterally either as intermittent injections or as an infusion. This is due to extensive hepatic “first pass” metabolism. Prolonged delivery through buccal mucosa may be potential substitute for parenteral infusions. To investigate this concept of buccal mucosal delivery, permeability ex vivo studies were performed through excised porcine buccal mucosa by utilizing Ussing diffusion chamber. Permeability rates were assessed for APO from simulated saliva medium at pH 7.4 as well as with utilization of different permeability modifying methods. Lowering the pH to 5.9 decreased permeability rate six-fold, while addition of ethanol: propylene glycol solution elevated it four-fold. Addition of nano-scale lipospheres to the donor compartment delayed the accumulation of APO at the receiver side, prolongating the lag-time from one to approx. three hours. These findings were strengthened by results obtained with co-administration of permeability markers (standards) atenolol and metoprolol. Simulation of the obtained permeability rates to in vivo setup in human showed therapeutically relevant plasma levels when using the outcomes of the current study. These findings verify the novel concept of APO prolonged release buccal administration as a noninvasive substitute for parenteral infusions in treating Parkinson's disease. © 2020
B. Da'Adoosh, Kaito, K. , Miyashita, K. , Sakaguchi, M. , and Goldblum, A. . 2020. Computational Design Of Substrate Selective Inhibition. Plos Computational Biology, 16, 3. doi:10.1371/journal.pcbi.1007713. Publisher's Version
Most enzymes act on more than a single substrate. There is frequently a need to block the production of a single pathogenic outcome of enzymatic activity on a substrate but to avoid blocking others of its catalytic actions. Full blocking might cause severe side effects because some products of that catalysis may be vital. Substrate selectivity is required but not possible to achieve by blocking the catalytic residues of an enzyme. That is the basis of the need for "Substrate Selective Inhibitors" (SSI), and there are several molecules characterized as SSI. However, none have yet been designed or discovered by computational methods. We demonstrate a computational approach to the discovery of Substrate Selective Inhibitors for one enzyme, Prolyl Oligopeptidase (POP) (E.C 3.4.21.26), a serine protease which cleaves small peptides between Pro and other amino acids. Among those are Thyrotropin Releasing Hormone (TRH) and Angiotensin-III (Ang-III), differing in both their binding (Km) and in turnover (kcat). We used our in-house "Iterative Stochastic Elimination" (ISE) algorithm and the structure-based "Pharmacophore" approach to construct two models for identifying SSI of POP. A dataset of  1.8 million commercially available molecules was initially reduced to less than 12,000 which were screened by these models to a final set of 20 molecules which were sent for experimental validation (five random molecules were tested for comparison). Two molecules out of these 20, one with a high score in the ISE model, the other successful in the pharmacophore model, were confirmed by in vitro measurements. One is a competitive inhibitor of Ang-III (increases its Km), but non-competitive towards TRH (decreases its Vmax). © 2020 Da'adoosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
S. El-Atawneh, Hirsch, S. , Hadar, R. , Tam, J. , and Goldblum, A. . 2020. Erratum: Prediction And Experimental Confirmation Of Novel Peripheral Cannabinoid-1 Receptor Antagonists (J. Chem. Inf. Model. (2019) 59:9 (3996-4006) Doi: 10.1021/Acs.jcim.9B00577). Journal Of Chemical Information And Modeling, 60, 10, Pp. 5282. doi:10.1021/acs.jcim.0c01116. Publisher's Version
In Section 3.1. “Characteristics of the Models”, page 4000, eq 1 of the “Enrichment Factor” should be (Equation presented). © 2020 American Chemical Society.
K.N. Babu, Massarwe, F. , Reddy, R.R. , Eghbarieh, N. , Jakob, M. , and Masarwa, A. . 2020. Unsymmetrical 1,1-Bisboryl Species: Valuable Building Blocks In Synthesis. Molecules, 25, 4. doi:10.3390/molecules25040959. Publisher's Version
Unsymmetrical 1,1-bis(boryl)alkanes and alkenes are organo-bismetallic equivalents, which are synthetically important because they allow for sequential selective transformations of C-B bonds. We reviewed the synthesis and chemical reactivity of 1,1-bis(boryl)alkanes and alkenes to provide information for the synthetic community. In the first part of this review, we disclose the synthesis and chemical reactivity of unsymmetrical 1,1-bisborylalkanes. In the second part, we describe the synthesis and chemical reactivity of unsymmetrical 1,1-bis(boryl)alkenes. © 2020 by the authors.
N. Kumar, Eghbarieh, N. , Stein, T. , Shames, A.I. , and Masarwa, A. . 2020. Photoredox-Mediated Reaction Of Gem-Diborylalkenes: Reactivity Toward Diverse 1,1-Bisborylalkanes. Chemistry - A European Journal, 26, 24, Pp. 5360-5364. doi:10.1002/chem.202000603. Publisher's Version
The use of gem-diborylalkenes as radical-reactive groups is explored for the first time. These reactions provide an efficient and general method for the photochemical conversion of gem-diborylalkenes to rapidly access 1,1-bisborylalkanes. This method exploits a novel photoredox decarboxylative radical addition to gem-diborylalkenes to afford α-gem-diboryl carbon-centered radicals, which benefit from additional stability by virtue of an interaction with the empty p-orbitals on borons. The reaction offers a highly modular and regioselective approach to γ-amino gem-diborylalkanes. Furthermore, EPR spectroscopy and DFT calculations have provided insight into the radical mechanism underlying the photochemistry reaction and the stability of the bis-metalated radicals, respectively. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
A. Di Pizio, Ben Shoshan-Galeczki, Y. , Hayes, J.E. , and Niv, M.Y. . 2019. Bitter And Sweet Tasting Molecules: It's Complicated. Neuroscience Letters, 700, Pp. 56-63. doi:10.1016/j.neulet.2018.04.027. Publisher's Version
“Bitter” and “sweet” are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules. © 2018 Elsevier B.V.
T. Nassar, Rohald, A. , Naraykin, N. , Barasch, D. , Amsalem, O. , Prabhu, P. , Kotler, M. , and Benita, S. . 2019. Nanocapsules Embedded In Microparticles For Enhanced Oral Bioavailability And Efficacy Of Lopinavir As An Anti-Aids Drug. Journal Of Drug Targeting, 27, 5-6, Pp. 590-600. doi:10.1080/1061186X.2018.1552275. Publisher's Version
Lopinavir (LPV), an efficient drug for HIV infection treatment, was incorporated into biodegradable PLGA nanocapsules (NCs) embedded in microparticles (MCPs) using the spray-drying technique in an attempt to bypass the P-gp efflux and protect the drug from CYP3A pre-systemic metabolism without ritonavir (RTV). SEM observations confirmed the formation of NCs and their entrapment in the MCPs. LPV-loaded NCs and free LPV were released from the MCPs at pH of 7.4 as evidenced by in vitro release studies. Results obtained from rat studies showed a two-fold higher bioavailability of LPV following oral administration of the optimal formulation than Kaletra®, the marketed drug, showing that when properly entrapped, LPV can be effectively protected from CYP degradation in the gut as well as from the liver following systemic absorption. It was also shown that serum derived from rats following LPV oral administration in two formulations and Kaletra® significantly decreased the multiplication of HIV-1 in cultured SupT1 cells. Furthermore, the LPV formulations markedly restricted the titre of infectious HIV-1 production compared with Kaletra® confirming the improved antiviral activity of LPV delivered in the rat blood circulation by the nanocapsules embedded in microparticle formulations. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Pages