Publications

Shira Hirsch, Hinden, Liad , Naim-Ben-David, Meital , Baraghithy, Saja , Permyakova, Anna , Azar, Shahar , Nasser, Taher , Portnoy, Emma , Agbaria, Majd , Nemirovski, Alina , Golomb, Gershon , and Tam, Joseph . 2022. Hepatic Targeting Of The Centrally Active Cannabinoid 1 Receptor (Cb(1)R) Blocker Rimonabant Via Plga Nanoparticles For Treating Fatty Liver Disease And Diabetes.. Journal Of Controlled Release : Official Journal Of The Controlled Release Society. doi:10.1016/j.jconrel.2022.11.040.
Over-activation of the endocannabinoid/CB(1)R system is a hallmark feature of obesity and its related comorbidities, most notably type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD). Although the use of drugs that widely block the CB(1)R was found to be highly effective in treating all metabolic abnormalities associated with obesity, they are no longer considered a valid therapeutic option due to their adverse neuropsychiatric side effects. Here, we describe a novel nanotechnology-based drug delivery system for repurposing the abandoned first-in-class global CB(1)R antagonist, rimonabant, by encapsulating it in polymeric nanoparticles (NPs) for effective hepatic targeting of CB(1)Rs, enabling effective treatment of NAFLD and T2D. Rimonabant-encapsulated NPs (Rimo-NPs) were mainly distributed in the liver, spleen, and kidney, and only negligible marginal levels of rimonabant were found in the brain of mice treated by iv/ip administration. In contrast to freely administered rimonabant treatment, no CNS-mediated behavioral activities were detected in animals treated with Rimo-NPs. Chronic treatment of diet-induced obese mice with Rimo-NPs resulted in reduced hepatic steatosis and liver injury as well as enhanced insulin sensitivity, which were associated with enhanced cellular uptake of the formulation into hepatocytes. Collectively, we successfully developed a method of encapsulating the centrally acting CB(1)R blocker in NPs with desired physicochemical properties. This novel drug delivery system allows hepatic targeting of rimonabant to restore the metabolic advantages of blocking CB(1)R in peripheral tissues, especially in the liver, without the negative CB(1)R-mediated neuropsychiatric side effects.
Elad Ben-Cnaan, Permyakova, Anna , Azar, Shahar , Shira Hirsch, , Baraghithy, Saja , Hinden, Liad , and Tam, Joseph . 2022. The Metabolic Efficacy Of A Cannabidiolic Acid (Cbda) Derivative In Treating Diet- And Genetic-Induced Obesity.. International Journal Of Molecular Sciences, 23, 10. doi:10.3390/ijms23105610.
Obesity is a global medical problem; its common form is known as diet-induced obesity (DIO); however, there are several rare genetic disorders, such as Prader-Willi syndrome (PWS), that are also associated with obesity (genetic-induced obesity, GIO). The currently available therapeutics for treating DIO and GIO are very limited, and they result in only a partial improvement. Cannabidiolic acid (CBDA), a constituent of Cannabis sativa, gradually decarboxylates to cannabidiol (CBD). Whereas the anti-obesity properties of CBD have been reasonably identified, our knowledge of the pharmacology of CBDA is more limited due to its instability. To stabilize CBDA, a new derivative, CBDA-O-methyl ester (HU-580, EPM301), was synthesized. The therapeutic potential of EPM301 in appetite reduction, weight loss, and metabolic improvements in DIO and GIO was tested in vivo. EPM301 (40 mg/kg/d, i.p.) successfully resulted in weight loss, increased ambulation, as well as improved glycemic and lipid profiles in DIO mice. Additionally, EPM301 ameliorated DIO-induced hepatic dysfunction and steatosis. Importantly, EPM301 (20 and 40 mg/kg/d, i.p.) effectively reduced body weight and hyperphagia in a high-fat diet-fed Magel2(null) mouse model for PWS. In addition, when given to standard-diet-fed Magel2(null) mice as a preventive treatment, EPM301 completely inhibited weight gain and adiposity. Lastly, EPM301 increased the oxidation of different nutrients in each strain. All together, EPM301 ameliorated obesity and its metabolic abnormalities in both DIO and GIO. These results support the idea to further promote this synthetic CBDA derivative toward clinical evaluation in humans.
Irena Voinsky, Zoabi, Yazeed , Shomron, Noam , Harel, Moria , Cassuto, Hanoch , Tam, Joseph , Rose, Shannon , Scheck, Adrienne C, Karim, Mohammad A, Frye, Richard E, Adi Aran, , and Gurwitz, David . 2022. Blood Rna Sequencing Indicates Upregulated Batf2 And Ly6E And Downregulated Isg15 And Mt2A Expression In Children With Autism Spectrum Disorder.. International Journal Of Molecular Sciences, 23, 17. doi:10.3390/ijms23179843.
Mutations in over 100 genes are implicated in autism spectrum disorder (ASD). DNA SNPs, CNVs, and epigenomic modifications also contribute to ASD. Transcriptomics analysis of blood samples may offer clues for pathways dysregulated in ASD. To expand and validate published findings of RNA-sequencing (RNA-seq) studies, we performed RNA-seq of whole blood samples from an Israeli discovery cohort of eight children with ASD compared with nine age- and sex-matched neurotypical children. This revealed 10 genes with differential expression. Using quantitative real-time PCR, we compared RNAs from whole blood samples of 73 Israeli and American children with ASD and 26 matched neurotypical children for the 10 dysregulated genes detected by RNA-seq. This revealed higher expression levels of the pro-inflammatory transcripts BATF2 and LY6E and lower expression levels of the anti-inflammatory transcripts ISG15 and MT2A in the ASD compared to neurotypical children. BATF2 was recently reported as upregulated in blood samples of Japanese adults with ASD. Our findings support an involvement of these genes in ASD phenotypes, independent of age and ethnicity. Upregulation of BATF2 and downregulation of ISG15 and MT2A were reported to reduce cancer risk. Implications of the dysregulated genes for pro-inflammatory phenotypes, immunity, and cancer risk in ASD are discussed.
Ran Abuhasira, Azar, Shahar , Nemirovski, Alina , Tam, Joseph , and Novack, Victor . 2022. Herbal Cannabis Use Is Not Associated With Changes In Levels Of Endocannabinoids And Metabolic Profile Alterations Among Older Adults.. Life (Basel, Switzerland), 12, 10. doi:10.3390/life12101539.
Activation of the endocannabinoid system has various cardiovascular and metabolic expressions, including increased lipogenesis, decreased blood pressure, increased heart rate, and changes in cholesterol levels. There is a scarcity of data on the metabolic effects of exogenous cannabis in older adults; therefore, we aimed to assess the effect of exogenous cannabis on endocannabinoid levels and the association with changes in 24 h ambulatory blood pressure and lipid levels. We conducted a prospective study of patients aged 60 years or more with hypertension treated with a new prescription of herbal cannabis. We assessed changes in endocannabinoids, blood pressure, and metabolic parameters prior to and following three months of cannabis use. Fifteen patients with a mean age of 69.47 ± 5.83 years (53.3% male) underwent complete evaluations. Changes in 2-arachidonoylglycerol, an endocannabinoid, were significantly positively correlated with changes in triglycerides. Changes in arachidonic acid levels were significantly positively correlated with changes in C-reactive protein and with changes in mean diastolic blood pressure. Exogenous consumption of cannabidiol was negatively correlated with endogenous levels of palmitoylethanolamide and oleoylethanolamide. On average, cannabis treatment for 3 months does not result in a significant change in the levels of endogenous cannabinoids and thus has a safe metabolic risk profile.
Gitit Kra, Daddam, Jayasimha Rayalu , Moallem, Uzi , Kamer, Hadar , Kočvarová, Radka , Nemirovski, Alina , Contreras, Andres G, Tam, Joseph , and Zachut, Maya . 2022. Effects Of Omega-3 Supplementation On Components Of The Endocannabinoid System And Metabolic And Inflammatory Responses In Adipose And Liver Of Peripartum Dairy Cows.. Journal Of Animal Science And Biotechnology, 13, 1, Pp. 114. doi:10.1186/s40104-022-00761-9.
BACKGROUND: Dietary supplementation of omega-3 fatty acids can reduce the activation of the endocannabinoid system (ECS) by decreasing the availability of arachidonic acid, thus lowering endocannabinoids (eCBs) levels. The ECS is a modulator of energy metabolism, stress response and inflammation in mammals, yet there is little information on the roles of the ECS in transition dairy cows. During the periparturient period, the adipose tissue and liver are the main metabolic organs that participate in the adaptations of dairy cows to onset of lactation; however, exceeded adipose tissue lipolysis and accumulation of lipids in the liver have adverse effects on cows' physiology. Here we aimed to examine whether omega-3 supplementation during the transition period will modulate ECS activation and affect metabolic and inflammatory indices in postpartum dairy cows, by supplementing twenty-eight transition Holstein dairy cows with either saturated fat (CTL) or encapsulated flaxseed oil (FLX). Components of the ECS, metabolic and inflammatory markers were measured in blood, liver, and subcutaneous adipose tissue. RESULTS: FLX supplementation reduced feed intake by 8.1% (P < 0.01) and reduced plasma levels of arachidonic acid (by 44.2%; P = 0.02) and anandamide (by 49.7%; P = 0.03) postpartum compared to CTL. The mRNA transcription levels of the cannabinoid receptor 1 (CNR1/CB1) tended to be lower (2.5 folds) in white blood cells of FLX than in CTL (P = 0.10), and protein abundance of ECS enzyme monoacylglycerol lipase was higher in peripheral blood mononuclear cells of FLX than in CTL (P = 0.04). In adipose tissue, palmitoylethanolamide levels were lower in FLX than in CTL (by 61.5%; P = 0.02), relative mRNA transcription of lipogenic genes were higher, and the protein abundance of cannabinoid receptor 2 (P = 0.08) and monoacylglycerol lipase (P = 0.10) tended to be higher in FLX compared to CTL. Hepatic 2-arachidonoylglycerol tended to be higher (by 73.1%; P = 0.07), and interlukin-6 mRNA transcription level was 1.5 folds lower in liver of FLX than in CTL (P = 0.03). CONCLUSIONS: Nutritional supplementation of omega-3 fatty acids seems to partly modulate ECS activation, which could be related to lower feed intake. The altered ECS components in blood, adipose tissue and liver are associated with moderate modulations in lipid metabolism in the adipose and inflammation in liver of peripartum dairy cows.
Liad Hinden, Ludyansky, Rami , Leidershnaider, Sary , Harris, Yoav , Nemirovski, Alina , Gofrit, Ofer N, Tam, Joseph , and Hidas, Guy . 2022. Peripheral Cannabinoid-1 Receptor Blockade Ameliorates Cystitis Severity.. Cannabis And Cannabinoid Research. doi:10.1089/can.2022.0077.
Background: The endocannabinoid system (ECS) plays a key physiological role in bladder function and it has been suggested as a potential target for relieving lower urinary tract symptoms (LUTSs). Whereas most studies indicate that activating the ECS has some beneficial effects on the bladder, some studies imply the opposite. In this study, we investigated the therapeutic potential of peripheral cannabinoid-1 receptor (CB(1)R) blockade in a mouse model for LUTSs. Materials and Methods: To this end, we used the cyclophosphamide (CYP; 300 mg/kg, intraperitoneal)-induced cystitis model of bladder dysfunction, in which 12-week-old, female C57BL/6 mice were treated with the peripherally restricted CB(1)R antagonist, JD5037 (3 mg/kg), or vehicle for three consecutive days. Bladder dysfunction was assessed using the noninvasive voiding spot assay (VSA) as well as the bladder-to-body weight (BW) ratio and gene and protein expression levels; ECS tone was assessed at the end of the study. Results: Peripheral CB(1)R blockade significantly ameliorated the severity of CYP-induced cystitis, manifested by reduced urination events measured in the VSA and an increased bladder-to-BW ratio. Moreover, JD5037 normalized CYP-mediated bladder ECS tone imbalance by affecting both the expression of CB(1)R and the endocannabinoid levels. These effects were associated with the ability of JD5037 to reduce CYP-induced inflammatory response, manifested by a reduction in levels of the proinflammatory cytokine, tumor necrosis factor alpha (TNF$\alpha$), in the bladder and serum. Conclusions: Collectively, our results highlight the therapeutic relevance of peripheral CB(1)R blockade in ameliorating CYP-induced cystitis; they may further support the preclinical development and clinical use of peripherally restricted CB(1)R antagonism for treatment of LUTSs.
Aviad Schnapp, Harel, Moria , Cayam-Rand, Dalit , Cassuto, Hanoch , Polyansky, Lola , and Adi Aran, . 2022. A Placebo-Controlled Trial Of Cannabinoid Treatment For Disruptive Behavior In Children And Adolescents With Autism Spectrum Disorder: Effects On Sleep Parameters As Measured By The Cshq.. Biomedicines, 10, 7. doi:10.3390/biomedicines10071685.
{Autism spectrum disorder (ASD) is often associated with debilitating sleep disturbances. While anecdotal evidence suggests the positive effect of cannabinoids, randomized studies are lacking. Here, we report the effects of cannabinoid treatment on the sleep of 150 children and adolescents with ASD, as part of a double-blind, placebo-controlled study that assessed the impact of cannabinoid treatment on behavior (NCT02956226). Participants were randomly assigned to one of the following three treatments: (1) whole-plant cannabis extract, containing cannabidiol (CBD) and $Δ$9-Tetrahydrocannabinol (THC) in a 20:1 ratio, (2) purified CBD and THC extract in the same ratio, and (3) an oral placebo. After 12 weeks of treatment (Period 1) and a 4-week washout period, participants crossed over to a predetermined, second 12-week treatment (Period 2). Sleep disturbances were assessed using the Children's Sleep-Habit Questionnaire (CSHQ). We found that the CBD-rich cannabinoid treatment was not superior to the placebo treatment in all aspects of sleep measured by the CSHQ, including bedtime resistance, sleep-onset delay, and sleep duration. Notably, regardless of the treatment (cannabinoids or placebo), improvements in the CSHQ total score were associated with improvements in the autistic core symptoms, as indicated by the Social Responsiveness Scale total scores (Period 1: r = 0.266
Shimrit Heiliczer, Wilensky, Asaf , Gaver, Tal , Georgiev, Olga , Hamad, Sharleen , Nemirovski, Alina , Hadar, Rivka , Sharav, Yair , Aframian, Doron J, Tam, Joseph , and Haviv, Yaron . 2022. Salivary Endocannabinoid Profiles In Chronic Orofacial Pain And Headache Disorders: An Observational Study Using A Novel Tool For Diagnosis And Management.. International Journal Of Molecular Sciences, 23, 21. doi:10.3390/ijms232113017.
The endocannabinoid system is involved in physiological and pathological processes, including pain generation, modulation, and sensation. Its role in certain types of chronic orofacial pain (OFP) has not been thoroughly examined. By exploring the profiles of specific salivary endocannabinoids (eCBs) in individuals with different types of OFP, we evaluated their use as biomarkers and the influence of clinical parameters and pain characteristics on eCB levels. The salivary levels of anandamide (AEA), 2-arachidonoyl glycerol (2-AG), and their endogenous breakdown product arachidonic acid (AA), as well as the eCB-like molecules N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), were assessed in 83 OFP patients and 43 pain-free controls using liquid chromatography/tandem mass spectrometry. Patients were grouped by diagnosis: post-traumatic neuropathy (PTN), trigeminal neuralgia (TN), temporomandibular disorder (TMD), migraine, tension-type headache (TTH), and burning mouth syndrome (BMS). Correlation analyses between a specific diagnosis, pain characteristics, and eCB levels were conducted. Significantly lower levels of 2-AG were found in the TN and TTH groups, while significantly lower PEA levels were found in the migraine group. BMS was the only group with elevated eCBs (AEA) versus the control. Significant correlations were found between levels of specific eCBs and gender, health-related quality of life (HRQoL), BMI, pain duration, and sleep awakenings. In conclusion, salivary samples exhibited signature eCBs profiles for major OFP disorders, especially migraine, TTH, TN, and BMS. This finding may pave the way for using salivary eCBs biomarkers for more accurate diagnoses and management of chronic OFP patients.
V. Shumeiko, Paltiel, Y. , Bisker, G. , Hayouka, Z. , and Shoseyov, O. . 2021. A Nanoscale Paper-Based Near-Infrared Optical Nose (Niron). Biosensors And Bioelectronics, 172. doi:10.1016/j.bios.2020.112763. Publisher's Version
Electronic noses (e-nose) and optical noses (o-nose) are two emerging approaches for the development of artificial olfactory systems for flavor and smell evaluation. The current work leverages the unique optical properties of semiconducting single-wall carbon nanotubes (SWCNTs) to develop a prototype of a novel paper-based near-infrared optical nose (NIRON). We have drop-dried an array of SWCNTs encapsulated with a wide variety of peptides on a paper substrate and continuously imaged the emitted SWCNTs fluorescence using a CMOS camera. Odors and different volatile molecules were passed above the array in a flow chamber, resulting in unique modulation patterns of the SWCNT photoluminescence (PL). Quartz crystal microbalance (QCM) measurements performed in parallel confirmed the direct binding between the vapor molecules and the peptide-SWCNTs. PL levels measured before and during exposure demonstrate distinct responses to the four tested alcoholic vapors (ethanol, methanol, propanol, and isopropanol). In addition, machine learning tools directly applied to the fluorescence images allow us to distinguish between the aromas of red wine, beer, and vodka. Further, we show that the developed sensor can detect limonene, undecanal, and geraniol vapors, and differentiate between their smells utilizing the PL response pattern. This novel paper-based optical biosensor provides data in real-time, and is recoverable and suitable for working at room temperature and in a wide range of humidity levels. This platform opens new avenues for real-time sensing of volatile chemical compounds, odors, and flavors. © 2020 Elsevier B.V.
V. Shumeiko, Malach, E. , Helman, Y. , Paltiel, Y. , Bisker, G. , Hayouka, Z. , and Shoseyov, O. . 2021. A Nanoscale Optical Biosensor Based On Peptide Encapsulated Swcnts For Detection Of Acetic Acid In The Gaseous Phase. Sensors And Actuators, B: Chemical, 327. doi:10.1016/j.snb.2020.128832. Publisher's Version
Biosensors play a key role in almost every field of human activity – ranging from biomedical diagnosis and point-of-care health monitoring to environmental monitoring and forensics. Single-walled carbon nanotubes (SWCNTs) are one of the most promising materials for near-infrared (NIR) fluorescence-based biosensing. Herein, we develop a reusable, drop-casted, real-time optical biosensor based on peptide-encapsulated SWCNTs for the detection of low concentrations of acetic acid in the air, at room temperature. While detection of NIR signal usually requires expensive and bulky equipment, here we use the (6,5) SWCNTs chirality whose peak fluorescence lies within the range of 970 nm – 1050 nm, enabling the usage of low cost and compact silicon-based detectors. We demonstrate the detection of wine spoilage based on excess gaseous acetic acid using peptide-wrapped SWCNT sensors down to 0.05% (v/v) acetic acid concentrations. Our results open new avenues for gas phase detection using NIR fluorescent SWCNT nanosensors. © 2020 Elsevier B.V.
Rakesh Kumar, Geron, Matan , Hazan, Adina , and Priel, Avi . 2020. Endogenous And Exogenous Vanilloids Evoke Disparate Trpv1 Activation To Produce Distinct Neuronal Responses.. Frontiers In Pharmacology, 11, Pp. 903. doi:10.3389/fphar.2020.00903.
Neuronal signals are processed along the nociceptive pathway to convey discriminative information, which would manifest in the produced pain sensation. The transient receptor potential vanilloid 1 (TRPV1), an important signaling complex in nociceptors termini, is activated by different noxious stimuli that underlie distinct pain sensations. For example, while endovanilloids are associated with inflammatory pain and hypersensitivity through TRPV1 activation, the exovanilloid toxin, capsaicin, evokes an acute pain by activating this channel. Differences in the TRPV1 activation profile evoked by exogenous and endogenous vanilloids were suggested to underlie this disparity in pain sensations. However, the cellular processes that lead to these differences in pain sensation mediated by the same channel are not fully understood. Here, we sought to describe the neuronal response of TRPV1-expressing nociceptors to exo-and endovanilloids. To this end, we performed current-clamp recordings in rat trigeminal neurons exposed to either capsaicin or intracellular endovanilloids produced downstream of the bradykinin receptor BK2. Our results show that lipoxygenase metabolites generate persistent TRPV1-dependent action potential firing while capsaicin evokes robust depolarization and high-frequency firing that is quickly terminated by depolarization block. Additionally, we found that a weak TRPV1 activation prolongs action potential firing. Overall, our results indicate different firing patterns evoked by inflammatory mediators and capsaicin via TRPV1 that correlate with the respective subsequent pain sensation. These findings also suggest that differences in neuronal activation stem from the variable degree of TRPV1 activation they produce.
Y. Ben Shoshan-Galeczki and Niv, M.Y. . 2020. Structure-Based Screening For Discovery Of Sweet Compounds. Food Chemistry, 315. doi:10.1016/j.foodchem.2020.126286. Publisher's Version
Sweet taste is a cue for calorie-rich food and is innately attractive to animals, including humans. In the context of modern diets, attraction to sweetness presents a significant challenge to human health. Most known sugars and sweeteners bind to the Venus Fly Trap domain of T1R2 subunit of the sweet taste heterodimer. Because the sweet taste receptor structure has not been experimentally solved yet, a possible approach to finding sweet molecules is virtual screening using compatibility of candidate molecules to homology models of sugar-binding site. Here, the constructed structural models, docking and scoring schemes were validated by their ability to rank known sweet-tasting compounds higher than properties-matched random molecules. The best performing models were next used in virtual screening, retrieving recently patented sweeteners and providing novel predictions. © 2020 Elsevier Ltd
V. Stoeger, Holik, A.-K. , Hölz, K. , Dingjan, T. , Hans, J. , Ley, J.P. , Krammer, G.E. , Niv, M.Y. , Somoza, M.M. , and Somoza, V.. 2020. Bitter-Tasting Amino Acids L-Arginine And L -Isoleucine Differentially Regulate Proton Secretion Via T2R1 Signaling In Human Parietal Cells In Culture. Journal Of Agricultural And Food Chemistry, 68, 11, Pp. 3434-3444. doi:10.1021/acs.jafc.9b06285. Publisher's Version
This study aimed at identifying whether the bitter-tasting amino acids l-arginine (l-ARG) and l-isoleucine (l-ILE) differentially regulate mechanisms of gastric acid secretion in human parietal cells (HGT-1 cells) via activation of bitter taste sensing receptors (T2Rs). In a first set of experiments, involvement of T2Rs in l-ARG and l-ILE-modulated proton secretion was demonstrated by co-treatment of HGT-1 cells with T2R antagonists. Subsequent whole genome screenings by means of cDNA arrays revealed T2R1 as a prominent target for both amino acids. Next, the functional role of T2R1 was verified by means of a T2R1 CRISPR-Cas9 knock-out approach. Here, the effect of l-ARG on proton secretion decreased by 65.7 ± 21.9% and the effect of l-ILE increased by 93.2 ± 24.1% in HGT-1 T2R1 ko versus HGT-1 wt cells (p < 0.05). Overall, our results indicate differential effects of l-ARG and l-ILE on proton secretion in HGT-1 cells and our molecular docking studies predict distinct binding for these amino acids in the binding site of T2R1. Further studies will elucidate whether the mechanism of differential effects involves structure-specific ligand-biased signaling of T2R1 or additional cellular targets. Copyright © 2019 American Chemical Society.
A. Altberg, Hovav, R. , Chapnik, N. , and Madar, Z. . 2020. Effect Of Dietary Oils From Various Sources On Carbohydrate And Fat Metabolism In Mice. Food And Nutrition Research, 64, Pp. 1-12. doi:10.29219/fnr.v64.4287. Publisher's Version
Background: Dietary oils differ in their fatty acid composition and the presence of additional microcompo-nents (antioxidants, etc.). These differences are thought to invoke different biochemical pathways, thus affecting fats and carbohydrates metabolism differently. Olive oil (OO) and soybean oil (SO) are common vegetable oils in the local cuisine. Peanuts oils of local varieties are viewed as potential sources of dietary vegetable oils, especially in the food industry. Objective: We examined the effect of four different dietary vegetable oils on carbohydrate and lipid metabolism in mice. The selected oils were OO, high in oleic acid, extracted from cultivated high oleic acid peanut (C-PO), regular peanut oil (PO), and SO. Design: In this study, 32 male C57BL/6J mice were randomly divided into four groups (n = 8 in each group) and were fed with four different diets enriched with 4% (w/w) dietary vegetable oils (OO, C-PO, PO, or SO). After 10 weeks, the mice were sacrificed. Western blot was used to examine proteins such as phospho-AMP-activated protein kinase (p-AMPK), ace-tyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), and Sirtuin 1 (SIRT1), whereas real-time polymerase chain reaction (PCR) was used to examine the expression of sterol regulatory element-binding protein-1c (SREBP-1C), fatty acid synthase (FAS), glucose-6-phosphatase (G6Pase), and CD36 transcripts. Results: In mice-fed SO, lipid accumulation was predominately in adipose tissue, accompanied a tendency decrease in insulin sensitivity. Mice-fed OO had lower plasma triglycerides (TG) and increased hepatic CD36 gene expression. The C-PO group presented lower messenger RNA (mRNA) levels in the liver for all examined genes: SREBP-1c, FAS, G6Pase, and CD36. There were no significant differences in weight gain, plasma cholesterol and high-density lipoprotein (HDL) cholesterol levels, hepatic ACC, SIRT1, AMPK, and CD36 protein levels or in liver function among the diets. Discussion: It seems that as long as fat is consumed in moderation, oil types may play a lesser role in the metabolism of healthy individuals. Conclusion: This finding has the potential to increase flexibility in choosing oil types for consumption. © 2020 Anna Altberg et al.

Pages