G. Donvito, F. Piscitelli, P. Muldoon, A. Jackson, R.M. Vitale, E. D'Aniello, C. Giordano, B.M. Ignatowska-Jankowska, M.A. Mustafa, F. Guida, G.N. Petrie, L. Parker, R. Smoum, L. Sim-Selley, S. Maione, A.H. Lichtman, M.I. Damaj, V. Di Marzo, and R. Mechoulam. 2019. “N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice.” Neuropharmacology, 148, Pp. 320-331. Publisher's Version Abstract
Cigarette smokers with brain damage involving the insular cortex display cessation of tobacco smoking, suggesting that this region may contribute to nicotine addiction. In the present study, we speculated that molecules in the insular cortex that are sensitive to experimental traumatic brain injury (TBI) in mice might provide leads to ameliorate nicotine addiction. Using targeted lipidomics, we found that TBI elicited substantial increases of a largely uncharacterized lipid, N-acyl-glycine, N-oleoyl-glycine (OlGly), in the insular cortex of mice. We then evaluated whether intraperitoneal administration of OlGly would alter withdrawal responses in nicotine-dependent mice as well as the rewarding effects of nicotine, as assessed in the conditioned place preference paradigm (CPP). Systemic administration of OlGly reduced mecamylamine-precipitated withdrawal responses in nicotine-dependent mice and prevented nicotine CPP. However, OlGly did not affect morphine CPP, demonstrating a degree of selectivity. Our respective in vitro and in vivo observations that OlGly activated peroxisome proliferator-activated receptor alpha (PPAR-α) and the PPAR-α antagonist GW6471 prevented the OlGly-induced reduction of nicotine CPP in mice suggests that this lipid acts as a functional PPAR-α agonist to attenuate nicotine reward. These findings raise the possibility that the long chain fatty acid amide OlGly may possess efficacy in treating nicotine addiction. © 2018
L. Shbiro, D. Hen-Shoval, N. Hazut, K. Rapps, S. Dar, G. Zalsman, R. Mechoulam, A. Weller, and G. Shoval. 2019. “Effects of cannabidiol in males and females in two different rat models of depression.” Physiology and Behavior, 201, Pp. 59-63. Publisher's Version Abstract
The current study explores the therapeutic potential of Cannabidiol (CBD), a compound in the Cannabis plant, using both sexes of 2 “depressive-like” genetic models, Wistar Kyoto (WKY) and Flinders Sensitive Line (FSL) rats. Rats ingested CBD (30 mg/kg) orally. In the saccharin preference test, following a previous report of a pro-hedonic effect of CBD in male WKY, we now found similar results in female WKY. CBD also decreased immobility in the forced swim test in males (both strains) and in female WKY. These findings suggest a role for CBD in treating mental disorders with prominent symptoms of helplessness and anhedonia. © 2018 Elsevier Inc.
I.M. Linares, A.W. Zuardi, L.C. Pereira, R.H. Queiroz, R. Mechoulam, F.S. Guimarães, and J.A. Crippa. 2019. “Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test.” Revista Brasileira de Psiquiatria, 41, 1, Pp. 9-14. Publisher's Version Abstract
Objective: Cannabidiol (CBD), one of the non-psychotomimetic compounds of Cannabis sativa, causes anxiolytic-like effects in animals, with typical bell-shaped dose-response curves. No study, however, has investigated whether increasing doses of this drug would also cause similar curves in humans. The objective of this study was to compare the acute effects of different doses of CBD and placebo in healthy volunteers performing a simulated public speaking test (SPST), a well-tested anxiety-inducing method. Method: A total of 57 healthy male subjects were allocated to receive oral CBD at doses of 150 mg (n=15), 300 mg (n=15), 600 mg (n=12) or placebo (n=15) in a double-blind procedure. During the SPST, subjective ratings on the Visual Analogue Mood Scale (VAMS) and physiological measures (systolic and diastolic blood pressure, heart rate) were obtained at six different time points. Results: Compared to placebo, pretreatment with 300 mg of CBD significantly reduced anxiety during the speech. No significant differences in VAMS scores were observed between groups receiving CBD 150 mg, 600 mg and placebo. Conclusion: Our findings confirm the anxiolytic-like properties of CBD and are consonant with results of animal studies describing bell-shaped dose-response curves. Optimal therapeutic doses of CBD should be rigorously determined so that research findings can be adequately translated into clinical practice. © 2019, Associacao Brasileira de Psiquiatria. All rights reserved.
G.N. Petrie, K.L. Wills, F. Piscitelli, R. Smoum, C.L. Limebeer, E.M. Rock, A.E. Humphrey, M. Sheppard-Perkins, A.H. Lichtman, R. Mechoulam, V. Di Marzo, and L.A. Parker. 2019. “Oleoyl glycine: interference with the aversive effects of acute naloxone-precipitated MWD, but not morphine reward, in male Sprague–Dawley rats.” Psychopharmacology, 236, 9, Pp. 2623-2633. Publisher's Version Abstract
Rationale: Oleoyl glycine (OlGly), a recently discovered fatty acid amide that is structurally similar to N- acylethanolamines, which include the endocannabinoid, anandamide (AEA), as well as endogenous peroxisome proliferator-activated receptor alpha (PPARα) agonists oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), has been shown to interfere with nicotine reward and dependence in mice. Objectives and methods: Behavioral and molecular techniques were used to investigate the ability of OlGly to interfere with the affective properties of morphine and morphine withdrawal (MWD) in male Sprague–Dawley rats. Results: Synthetic OlGly (1–30 mg/kg, intraperitoneal [ip]) produced neither a place preference nor aversion on its own; however, at doses of 1 and 5 mg/kg, ip, it blocked the aversive effects of MWD in a place aversion paradigm. This effect was reversed by the cannabinoid 1 (CB1) receptor antagonist, AM251 (1 mg/kg, ip), but not the PPARα antagonist, MK886 (1 mg/kg, ip). OlGly (5 or 30 mg/kg, ip) did not interfere with a morphine-induced place preference or reinstatement of a previously extinguished morphine-induced place preference. Ex vivo analysis of tissue (nucleus accumbens, amygdala, prefrontal cortex, and interoceptive insular cortex) collected from rats experiencing naloxone-precipitated MWD revealed that OlGly was selectively elevated in the nucleus accumbens. MWD did not modify levels of the endocannabinoids 2-AG and AEA, nor those of the PPARα ligands, OEA and PEA, in any region evaluated. Conclusion: Here, we show that OlGly interferes with the aversive properties of acute naloxone-precipitated morphine withdrawal in rats. These results suggest that OlGly may reduce the impact of MWD and may possess efficacy in treating opiate withdrawal. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
T. Stark, J. Ruda-Kucerova, F.A. Iannotti, C. D'Addario, R. Di Marco, V. Pekarik, E. Drazanova, F. Piscitelli, M. Bari, Z. Babinska, G. Giurdanella, M. Di Bartolomeo, S. Salomone, A. Sulcova, M. Maccarrone, C.T. Wotjak, Jr. Starcuk, Z., F. Drago, R. Mechoulam, V. Di Marzo, and V. Micale. 2019. “Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.” Neuropharmacology, 146, Pp. 212-221. Publisher's Version Abstract
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult. © 2018 Elsevier Ltd
L. Bar-Lev Schleider, R. Mechoulam, N. Saban, G. Meiri, and V. Novack. 2019. “Real life Experience of Medical Cannabis Treatment in Autism: Analysis of Safety and Efficacy.” Scientific Reports, 9, 1. Publisher's Version Abstract
There has been a dramatic increase in the number of children diagnosed with autism spectrum disorders (ASD) worldwide. Recently anecdotal evidence of possible therapeutic effects of cannabis products has emerged. The aim of this study is to characterize the epidemiology of ASD patients receiving medical cannabis treatment and to describe its safety and efficacy. We analysed the data prospectively collected as part of the treatment program of 188 ASD patients treated with medical cannabis between 2015 and 2017. The treatment in majority of the patients was based on cannabis oil containing 30% CBD and 1.5% THC. Symptoms inventory, patient global assessment and side effects at 6 months were primary outcomes of interest and were assessed by structured questionnaires. After six months of treatment 82.4% of patients (155) were in active treatment and 60.0% (93) have been assessed; 28 patients (30.1%) reported a significant improvement, 50 (53.7%) moderate, 6 (6.4%) slight and 8 (8.6%) had no change in their condition. Twenty-three patients (25.2%) experienced at least one side effect; the most common was restlessness (6.6%). Cannabis in ASD patients appears to be well tolerated, safe and effective option to relieve symptoms associated with ASD. © 2019, The Author(s).
Polymeric porous particles are currently used for various applications in biotechnology, tissue engineering and pharmaceutical science, e.g., floating drug delivery systems and inhaled formulations. Particle shape and size depend on variable parameters; among them, polymer type and concentration, stirring speed, pH and type of solvent. In this study, porous poly(lactic-co-glycolic) acid (PLGA) and poly(D,L-lactide) (PLA) microspheres (MPs), with varying sizes and morphologies, were synthesized and optimized using both batch formulation and a flow-focusing microfluidic device. A well-established method of preparation utilizing solvent evaporation and the double emulsion technique was performed. Similar to other batch encapsulation methods, this technique is time and reagent consuming and consists of several steps. Hence, although porous structures provide tremendous opportunity in the design of new applications for tissue engineering and as improved controlled-release carriers, the synthesis of these particles with predefined properties remains challenging. We demonstrated the fabrication of porous MPs using a simple microfluidic device, compared to batch synthesis fabrication; and the effect of solvent, polymer concentration and type, post-hydrolysis treatment, on porosity degree. Moreover, a kinetic release study of fluorescent molecule was conducted for non-porous in comparison to porous particles. An overview of future prospects and the potential of these porous beads in this scientific area are discussed. © 2019 by the authors.
The critical micelle concentration (CMC) is the point at which micelles are self-assembled from surfactants added to the system. Determination of the CMC is commonly based on surface tension and conductivity measurements since these are relatively simple and well described. The dye micellization method performed using pyrene as a fluorescent probe, is limited like other methods by inaccuracy and the lack of a standard procedure. We established a simple, robust, and straightforward method based on dye micellization, using coumarin-6 as a fluorescent probe for CMC determination. We first optimized the method and demonstrated the problematic pyrene detection by a plate reader. We compared the novel method to the established surface tension method using anionic, cationic and non-ionic surfactants, and compared to reported values in the literature. We selected to measure sodium dodecyl sulfate using the conductivity method, followed by visualization by fluorescence microscopy. The values obtained by our method were reproducible and in accordance with the values reported in the literature, regardless of the ionic charge of the surfactant. Adopting such a robust protocol would be beneficial for pharmaceutical research and industry and has the potential to replace the more laborious and less accurate commonly available methods. © 2019 The Royal Society of Chemistry.
S. Ezrahi, A. Aserin, and N. Garti. 2019. “Basic principles of drug delivery systems – the case of paclitaxel.” Advances in Colloid and Interface Science, 263, Pp. 95-130. Publisher's Version Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems. © 2018 Elsevier B.V.
D. Vela-Corcía, D. Aditya Srivastava, A. Dafa-Berger, N. Rotem, O. Barda, and M. Levy. 2019. “MFS transporter from Botrytis cinerea provides tolerance to glucosinolate-breakdown products and is required for pathogenicity.” Nature Communications, 10, 1. Publisher's Version Abstract
Glucosinolates accumulate mainly in cruciferous plants and their hydrolysis-derived products play important roles in plant resistance against pathogens. The pathogen Botrytis cinerea has variable sensitivity to glucosinolates, but the mechanisms by which it responds to them are mostly unknown. Exposure of B. cinerea to glucosinolate-breakdown products induces expression of the Major Facilitator Superfamily transporter, mfsG, which functions in fungitoxic compound efflux. Inoculation of B. cinerea on wild-type Arabidopsis thaliana plants induces mfsG expression to higher levels than on glucosinolate-deficient A. thaliana mutants. A B. cinerea strain lacking functional mfsG transporter is deficient in efflux ability. It accumulates more isothiocyanates (ITCs) and is therefore more sensitive to this compound in vitro; it is also less virulent to glucosinolates-containing plants. Moreover, mfsG mediates ITC efflux in Saccharomyces cerevisiae cells, thereby conferring tolerance to ITCs in the yeast. These findings suggest that mfsG transporter is a virulence factor that increases tolerance to glucosinolates. © 2019, The Author(s).
C.E. Calderón, N. Rotem, R. Harris, D. Vela-Corcía, and M. Levy. 2019. “Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea.” Molecular Plant Pathology, 20, 4, Pp. 562-574. Publisher's Version Abstract
Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied. In previous work, we have established that the epiphytic yeast Pseudozyma aphidis inhibits Botrytis cinerea through induced resistance and antibiosis. Here, we demonstrate that P. aphidis adheres to B. cinerea hyphae and competes with them for nutrients. We further show that the secreted antifungal compounds activate the production of reactive oxygen species and programmed cell death in B. cinerea mycelium. Finally, P. aphidis and its secreted compounds negatively affect B. cinerea hyphae, leading to morphological alterations, including hyphal curliness, vacuolization and branching, which presumably affects the colonization ability and infectivity of B. cinerea. This study demonstrates additional modes of action for P. aphidis and its antifungal compounds against the plant pathogen B. cinerea. © 2018 The Authors. Molecular Plant Pathology published by BSPP and John Wiley & Sons Ltd
Oleoyl serine (OS), an endogenous fatty acyl amide (FAA) found in bone, has been shown to have an anti-osteoporotic effect. OS, being an amide, can be hydrolyzed in the body by amidases. Hindering its amide bond by introducing adjacent substituents has been demonstrated as a successful method for prolonging its skeletal activity. Here, we tested the therapeutic efficacy of two methylated OS derivatives, oleoyl α-methyl serine (HU-671) and 2-methyl-oleoyl serine (HU-681), in an ovariectomized mouse model for osteoporosis by utilizing combined micro-computed tomography, histomorphometry, and cell culture analyses. Our findings indicate that daily treatment for 6 weeks with OS or HU-671 completely rescues bone loss, whereas HU-681 has only a partial effect. The increased bone density was primarily due to enhanced trabecular thickness and number. Moreover, the most effective dose of HU-671 was 0.5 mg/kg/day, an order of magnitude lower than with OS. The reversal of bone loss resulted from increased bone formation and decreased bone resorption, as well as reversal of bone marrow adiposity. These results were further confirmed by determining the serum levels of osteocalcin and type 1 collagen C-terminal crosslinks, as well as demonstrating the enhanced antiadipogenic effect of HU-671. Taken together, these data suggest that methylation interferes with OS’s metabolism, thus enhancing its effects by extending its availability to its target cells. © 2019 by the authors.
In this review, we discuss the role of the endocannabinoid (eCB) system in regulating energy and metabolic homeostasis. Endocannabinoids, via activating the cannabinoid type-1 receptor (CB1R), are commonly known as mediators of the thrifty phenotype hypothesis due to their activity in the central nervous system, which in turn regulates food intake and underlies the development of metabolic syndrome. Indeed, these findings led to the clinical testing of globally acting CB1R blockers for obesity and various metabolic complications. However, their therapeutic potential was halted due to centrally mediated adverse effects. Recent observations that highlighted the key role of the peripheral eCB system in metabolic regulation led to the preclinical development of various novel compounds that block CB1R only in peripheral organs with very limited brain penetration and without causing behavioral side effects. These unique molecules, which effectively ameliorate obesity, type II diabetes, fatty liver, insulin resistance, and chronic kidney disease in several animal models, are likely to be further developed in the clinic and may revive the therapeutic potential of blocking CB1R once again. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
S. Azar, S. Sherf-Dagan, A. Nemirovski, M. Webb, A. Raziel, A. Keidar, D. Goitein, N. Sakran, O. Shibolet, J. Tam, and S. Zelber-Sagi. 2019. “Circulating Endocannabinoids Are Reduced Following Bariatric Surgery and Associated with Improved Metabolic Homeostasis in Humans.” Obesity Surgery, 29, 1, Pp. 268-276. Publisher's Version Abstract
Background: The endocannabinoid (eCB) system plays a key role in the development of obesity and its comorbidities. Limited information exists on the changes in circulating eCBs following bariatric surgery. Objectives: This study aims to (i) assess the circulating levels of eCBs and related molecules and (ii) examine the association between their levels and numerous clinical/metabolic features pre- and post-operatively. Methods: Sixty-five morbidly obese patients (age 42.78 ± 9.27 years; BMI 42.00 ± 5.01 kg/m 2 ) underwent laparoscopic sleeve gastrectomy (LSG) surgery, and were followed up for 12 months. Data collected included anthropometrics and metabolic parameters. The serum levels of the eCBs, 2-arachidonoylglycerol (2-AG), anandamide (AEA); and their related molecules, arachidonic acid (AA) and oleoylethanolamine (OEA) were measured by liquid chromatography-mass spectrometry. Results: Levels of 2-AG, AEA, and AA were reduced post operatively with no differences in serum OEA levels. The delta changes in eCB levels between pre- and post-operation were correlated with the delta of different metabolic parameters. Positive correlations were found between delta AA and waist circumference (WC) (r = 0.28, P < 0.05), free fat mass (r = 0.26, P < 0.05), SteatoTest score (r = 0.45, P < 0.05), and ALT (r = 0.32, P < 0.05). Delta AEA levels positively correlated with WC (r = 0.30, P < 0.05). Delta 2-AG levels positively correlated with total cholesterol (r = 0.27, P < 0.05), triglycerides (r = 0.55, P < 0.05), and SteatoTest score (r = 0.27, P < 0.05). Delta OEA levels negatively correlated with fasting glucose levels (r = − 0.27, P < 0.05). Conclusions: This study provides compelling evidence that LSG surgery induces reductions in the circulating 2-AG, AEA, and AA levels, and that these changes are associated with clinical benefits related to the surgery including reduced fat mass, hepatic steatosis, glucose, and improved lipid profile. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
L. Hinden and J. Tam. 2019. “Do endocannabinoids regulate glucose reabsorption in the kidney?” Nephron, 143, 1, Pp. 24-27. Publisher's Version Abstract
Diabetic nephropathy (DN), a distinct manifestation of diabetic kidney disease, affects approximately 30% of patients with diabetes. While most attention has been focused on glomerular changes related to DN, there is growing evidence that tubulopathy is a key feature in the pathogenesis of this disease. The renal proximal tubule cells (RPTCs) are particularly sensitive to the deleterious effect of chronic hyperglycemia. However, the cellular changes that control the dysfunction of the RPTCs are not fully understood. Controlling glucose reabsorption in the proximal tubules via inhibition of glucose transporters (GLUT) has emerged as a promising therapeutic in ameliorating DN. Overactivation of the renal endocannabinoid (eCB) system via the cannabinoid-1 receptor (CB1R) contributes to the development of DN, and its blockade by globally acting or peripherally restricted CB1R antagonists has been shown to ameliorate renal dysfunction in different murine models for diabetes. Recently, we have utilized various pharmacological and genetic tools to show that the eCB/CB1R system contributes to the development of DN via regulating the expression, translocation, and activity of the facilitative GLUT2 located in the RPTCs. These findings have the potential to be translated into therapy, and support the rationale for the preclinical development of novel renal-specific CB1R and/or GLUT2 inhibitors for the treatment of DN. © 2019 S. Karger AG, Basel. All rights reserved.