Adi Aran

2022
Irena Voinsky, Zoabi, Yazeed , Shomron, Noam , Harel, Moria , Cassuto, Hanoch , Tam, Joseph , Rose, Shannon , Scheck, Adrienne C, Karim, Mohammad A, Frye, Richard E, Adi Aran, , and Gurwitz, David . 2022. Blood Rna Sequencing Indicates Upregulated Batf2 And Ly6E And Downregulated Isg15 And Mt2A Expression In Children With Autism Spectrum Disorder.. International Journal Of Molecular Sciences, 23, 17. doi:10.3390/ijms23179843.
Mutations in over 100 genes are implicated in autism spectrum disorder (ASD). DNA SNPs, CNVs, and epigenomic modifications also contribute to ASD. Transcriptomics analysis of blood samples may offer clues for pathways dysregulated in ASD. To expand and validate published findings of RNA-sequencing (RNA-seq) studies, we performed RNA-seq of whole blood samples from an Israeli discovery cohort of eight children with ASD compared with nine age- and sex-matched neurotypical children. This revealed 10 genes with differential expression. Using quantitative real-time PCR, we compared RNAs from whole blood samples of 73 Israeli and American children with ASD and 26 matched neurotypical children for the 10 dysregulated genes detected by RNA-seq. This revealed higher expression levels of the pro-inflammatory transcripts BATF2 and LY6E and lower expression levels of the anti-inflammatory transcripts ISG15 and MT2A in the ASD compared to neurotypical children. BATF2 was recently reported as upregulated in blood samples of Japanese adults with ASD. Our findings support an involvement of these genes in ASD phenotypes, independent of age and ethnicity. Upregulation of BATF2 and downregulation of ISG15 and MT2A were reported to reduce cancer risk. Implications of the dysregulated genes for pro-inflammatory phenotypes, immunity, and cancer risk in ASD are discussed.
Aviad Schnapp, Harel, Moria , Cayam-Rand, Dalit , Cassuto, Hanoch , Polyansky, Lola , and Adi Aran, . 2022. A Placebo-Controlled Trial Of Cannabinoid Treatment For Disruptive Behavior In Children And Adolescents With Autism Spectrum Disorder: Effects On Sleep Parameters As Measured By The Cshq.. Biomedicines, 10, 7. doi:10.3390/biomedicines10071685.
{Autism spectrum disorder (ASD) is often associated with debilitating sleep disturbances. While anecdotal evidence suggests the positive effect of cannabinoids, randomized studies are lacking. Here, we report the effects of cannabinoid treatment on the sleep of 150 children and adolescents with ASD, as part of a double-blind, placebo-controlled study that assessed the impact of cannabinoid treatment on behavior (NCT02956226). Participants were randomly assigned to one of the following three treatments: (1) whole-plant cannabis extract, containing cannabidiol (CBD) and $Δ$9-Tetrahydrocannabinol (THC) in a 20:1 ratio, (2) purified CBD and THC extract in the same ratio, and (3) an oral placebo. After 12 weeks of treatment (Period 1) and a 4-week washout period, participants crossed over to a predetermined, second 12-week treatment (Period 2). Sleep disturbances were assessed using the Children's Sleep-Habit Questionnaire (CSHQ). We found that the CBD-rich cannabinoid treatment was not superior to the placebo treatment in all aspects of sleep measured by the CSHQ, including bedtime resistance, sleep-onset delay, and sleep duration. Notably, regardless of the treatment (cannabinoids or placebo), improvements in the CSHQ total score were associated with improvements in the autistic core symptoms, as indicated by the Social Responsiveness Scale total scores (Period 1: r = 0.266
2019
A. Aran, Eylon, M. , Harel, M. , Polianski, L. , Nemirovski, A. , Tepper, S. , Schnapp, A. , Cassuto, H. , Wattad, N. , and Tam, J. . 2019. Lower Circulating Endocannabinoid Levels In Children With Autism Spectrum Disorder. Molecular Autism, 10, 1. doi:10.1186/s13229-019-0256-6.
Background: The endocannabinoid system (ECS) is a major regulator of synaptic plasticity and neuromodulation. Alterations of the ECS have been demonstrated in several animal models of autism spectrum disorder (ASD). In some of these models, activating the ECS rescued the social deficits. Evidence for dysregulations of the ECS in human ASD are emerging, but comprehensive assessments and correlations with disease characteristics have not been reported yet. Methods: Serum levels of the main endocannabinoids, N-arachidonoylethanolamine (AEA or anandamide) and 2-arachidonoylglycerol (2-AG), and their related endogenous compounds, arachidonic acid (AA), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA), were analyzed by liquid chromatography/tandem mass spectrometry in 93 children with ASD (age = 13.1 ± 4.1, range 6-21; 79% boys) and 93 age- and gender-matched neurotypical children (age = 11.8 ± 4.3, range 5.5-21; 79% boys). Results were associated with gender and use of medications, and were correlated with age, BMI, and adaptive functioning of ASD participants as reflected by scores of Autism Diagnostic Observation Schedule (ADOS-2), Vineland Adaptive Behavior Scale-II (VABS-II), and Social Responsiveness Scale-II (SRS-2). Results: Children with ASD had lower levels (pmol/mL, mean ± SEM) of AEA (0.722 ± 0.045 vs. 1.252 ± 0.072, P < 0.0001, effect size 0.91), OEA (17.3 ± 0.80 vs. 27.8 ± 1.44, P < 0.0001, effect size 0.94), and PEA (4.93 ± 0.32 vs. 7.15 ± 0.37, P < 0.0001, effect size 0.65), but not AA and 2-AG. Serum levels of AEA, OEA, and PEA were not significantly associated or correlated with age, gender, BMI, medications, and adaptive functioning of ASD participants. In children with ASD, but not in the control group, younger age and lower BMI tended to correlate with lower AEA levels. However, these correlations were not statistically significant after a correction for multiple comparisons. Conclusions: We found lower serum levels of AEA, PEA, and OEA in children with ASD. Further studies are needed to determine whether circulating endocannabinoid levels can be used as stratification biomarkers that identify clinically significant subgroups within the autism spectrum and if they reflect lower endocannabinoid "tone" in the brain, as found in animal models of ASD. © 2019 The Author(s).