Dmitry Tsvelikhovsky

A. Lahiani, D. Haham-Geula, D. Lankri, S. Cornell-Kennon, E.M. Schaefer, D. Tsvelikhovsky, and P. Lazarovici. 2020. “Neurotropic activity and safety of methylene-cycloalkylacetate (MCA) derivative 3-(3-allyl-2-methylenecyclohexyl) propanoic acid.” ACS Chemical Neuroscience, 11, 17, Pp. 2577-2589. Publisher's Version Abstract
Polyneuropathy is a disease involving multiple peripheral nerves injuries. Axon regrowth remains the major prerequisite for plasticity, regeneration, circuit formation, and eventually functional recovery and therefore, regulation of neurite outgrowth might be a candidate for treating polyneuropathies. In a recent study, we synthesized and established the methylene-cycloalkylacetate (MCAs) pharmacophore as a lead for the development of a neurotropic drug (inducing neurite/axonal outgrowth) using the PC12 neuronal model. In the present study we extended the characterizations of the in vitro neurotropic effect of the derivative 3-(3-allyl-2-methylenecyclohexyl) propanoic acid (MCA-13) on dorsal root ganglia and spinal cord neuronal cultures and analyzed its safety properties using blood biochemistry and cell counting, acute toxicity evaluation in mice and different in vitro “off-target” pharmacological evaluations. This MCA derivative deserves further preclinical mechanistic pharmacological characterizations including therapeutic efficacy in in vivo animal models of polyneuropathies, toward development of a clinically relevant neurotropic drug. © 2020 American Chemical Society
Y. Mostinski, D. Lankri, Y. Konovalov, R. Nataf, and D. Tsvelikhovsky. 2019. “Proline-promoted dehydroxylation of α-ketols.” Chemical Science, 10, 40, Pp. 9345-9350. Publisher's Version Abstract
A new single-step proline-potassium acetate promoted reductive dehydroxylation of α-ketols is reported. We introduce the unexplored reactivity of proline and, for the first time, reveal its ability to function as a reducing agent. The developed metal-free and open-flask operation generally results in good yields. Our protocol allows the challenging selective dehydroxylation of hydroxyketones without affecting other functional groups. This journal is © The Royal Society of Chemistry.